HYGRO-EXPANSION OF 3D-PRINTED BIOCOMPOSITES: STRUCTURAL WEAKNESSES AND OPPORTUNITY FOR ACTUATION

T. FRULEUX ¹, M. CASTRO¹, P. SAULEAU², R. MATSUZAKI³, A. LE DUIGOU¹

¹ : Institut de Recherches Dupuy de Lôme, Centre de Recherche Christian HUYGENS, Rue de Saint-Maudé, 56100 Lorient, France
² : Laboratoire de Biotechnologie et Chimie Marines, Centre de Recherche Christian HUYGENS, Rue de Saint-Maudé, 56100 Lorient, France
³ : Tokyo University of Science Noda Campus, 2641 Yamazaki, Noda-shi, Chiba-ken 278-8510, Japan

The problem of depletion of biotic resources in coastal areas and littoral zones is now accepted by the scientific community. To remedy this, artificial reefs supposed to promote the dynamics of repopulation have been developed in coastal areas. However, the latter are often made of concrete blocks, ship hulls or used tires. These are by no means sustainable solutions. Previous work has underlined the potential of natural fibre to be used as actuation agent in hygromorph biocomposites due to their hygroscopic behavior. Indeed, morphing ability of hygromorph biocomposite is controlled by the hygroscopic stress state induced by the fibre swelling within the polymer matrix.

The Morph-Reef project aims to develop a new concept of artificial 4D printed reef with hygromorph biocomposites while having a controlled lifespan and positive effect on marine microorganism colonization. This first work focuses on the understanding of the effect of various biopolymer having different stiffness (PLA, PBS and PBAT) on flax fiber swelling and consequently on morphing potential. Thus, hygroscopic (sorption and hygro-expansion), tensile hygromechanical properties and colonization properties of continuous flax biocomposites will be investigated.

References