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Abstract 

 

To further improve the performance of the designed lattice structures and accelerate the design 

process, Machine Learning (ML) has been applied to lattice design in several attempts. For example, 

the use of clustering[1] algorithm helps to cluster the elements into different cell clusters. The 

employment of Neural Network (NN) accelerates the property prediction of lattice unit cells[2], [3], 

enables the inverse design of spinodoid metamaterial[4], and even help with the sensitivity analysis of 

TO[4]. 

 

 Herein, we propose a new lattice generation strategy that is computationally cheaper and 

produces high quality geometric definition based on Machine Learning (ML) when compared to 

traditional methods. To achieve the design of high-performance unit cells, firstly, the optimal 

mechanical property for each cell region is derived according to the loading condition and the 

reference density obtained utilising a conventional topology optimisation result. Next, a Neural 

Network (NN) is employed as an inverse generator which is responsible for predicting the cell pattern 

for the optimal mechanical property. Training data were collected from Finite Element (FE) analysis 

with varied cell parameters and then fed to the NN. With the help of ML, the time spent in building 

the inverse generator is significantly reduced. Furthermore, the ML-based inverse generator can 

handle different cell types rather than one specific type which facilitates the diversity and optimality of 

lattices. 

 

 More specifically, the 2D lattice unit cell is parameterised by the nodal parameters  

(4 parameters) and its mechanical properties are represented using the elasticity compliance matrix  

(6 independent components). A Neural Network (NN) is employed as an inverse generator which can 

output the representative parameters of lattice unit cells with the input elasticity properties. Training 

dataset with a size of 500 are collected from FE analysis of voxelised cells with varied cell parameters 

and then fed to the NN. To implement the lattice generation strategy, firstly, optimal density 

distribution is obtained from TO result as the reference elemental densities. Secondly, the optimal 

elasticity properties are determined based on the reference elemental density and the elemental stress 

condition. Finally, the NN-based inverse lattice generator is used to generate corresponding lattice unit 

cells from the optimal elasticity properties. 

 

Furthermore, through a series of sub-problems, the anisotropic properties for each element can 

be optimised. Based on the optimised anisotropic elasticity properties, lattice cells will be predicted 

through the developed inverse generator. To conclude, the lattice generation strategy consists of three 

steps: i) produce the greyscale structure using SIMP; ii) generate anisotropic properties for each cell 

region based on the greyscale SIMP result; iii) use the inverse lattice generator to output lattice unit 

cells from the anisotropic properties and form the final lattice structure. 

 

To enhance the performance of the lattice further a simple material anisotropy is considered 

aligned with the member axis of the lattice. It is expected that incorporating this material anisotropy 

will provide superior performance to the structures explored earlier.  
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Figure 1: Lattice structure generated by new strategy 
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